

Measure VCC/Battery Voltage Without Using I/O Pin on tinyAVR and megaAVR

Introduction

This application note describes a low-power solution to measure the V_{CC} /Battery voltage without using any I/O pins or external components.

The core idea is to let the internal reference voltage V_{bg} act as ADC input, and the target V_{CC} act as ADC reference.

This solution helps the users setting up applications with low power consumption, low MCU pin count, and/or few BOM parts.

For better resolution, this solution should be optimized due to its non-linearity. In general voltage/battery monitoring, the solution is quite attractive.

Features

- V_{CC} or battery voltage measurement
- No I/O pin occupying
- No external components
- Low power consumption

Table of Contents

Introduction1					
Fea	atures	5		1	
1.	Back	ground.		3	
2.	Theo	ory		5	
3.	Exan	nples		7	
	3.1.	Preparat	tion	7	
	3.2.	Example	of ATmega328PB	7	
	-	3.2.1.	ADC Input Selection.	9	
		3.2.2.	ADC Reference Selection	9	
		3.2.3.	Code Example for ATmega328PB	9	
		3.2.4.	Result Validation		
	3.3.	Example	e for ATtiny817		
		3.3.1.	ADC Input Selection.		
		3.3.2.	ADC Reference Selection		
		3.3.3	Code Example for ATtiny817		
		3.3.4.	Result Validation		
4.	Appendix				
5.	5. Revision History				
The Microchip Web Site					
Customer Change Notification Service					
Cu	stome	er Suppo	ort	21	
Microchip Devices Code Protection Feature					
Legal Notice					
Trademarks					
Quality Management System Certified by DNV23					
Wo	orldwid	de Sales	s and Service	24	

1. Background

Voltage measurement of the battery or system power is critical to monitor the system performance and stability, especially in applications like IoT, Wearable Devices, Automotive, Power metering, etc.

A simple measurement is to use the ADC to measure the V_{CC} value based on the circuitry, as shown in the figure below.

Once V_{IN} is determined, the V_{CC} can be calculated by the formula:

$$V_{cc} = V_{IN} \times (R1 + R2)/R2$$

However, ignoring the influence of a temperature drift to the resistances, there is one significant disadvantage in this approach: it will constantly consume power. In some low power applications with battery, obviously this is not acceptable.

Another improved approach is to add a switch to the circuitry. As shown in the figure below, once a measurement is needed, the switch is programmed to switch ON. If the measurement is finished, the switch is set to OFF status. The circuitry will not work and consume power when the switch is in the OFF status.

Although this improvement will decrease the power consumption from the external resistors, the MCU I/O resources have to be occupied, and still this is not acceptable in some MCU low pin count applications.

Sometimes the measuring accuracy becomes low as the resistance will drift due to temperature changes. Besides, the response from the switch ON command to be ready for accurate test is quite slow due to the internal capacitor charging of the ADC peripheral, as shown in the figure below.

Figure 1-3. Internal Analog Input Circuitry of the ADC

The question is, will there be any other approach with very low power consumption, quick response, and few external components? The answer is - YES.

This application note describes a quick voltage measurement without any I/O resources or external components.

2. Theory

Normally the voltage measurement can be calculated based on the formula shown below, supposing that ADC is 10-bit.

 $RES_{adc} = 1024 \times V_{IN}/V_{ref}$

where RES_{adc} is the value in the ADC result register, V_{in} is the input to the ADC, and V_{ref} is the voltage reference for the ADC.

A general way to measure the voltage, is to select external input voltage as *ADC* V_{in} , and select internal V_{CC} or V_{bg} as the *ADC* V_{ref} . This solution is just to the contrary, namely to select V_{bg} as V_{in} , and to select V_{CC} as V_{ref} . The formula can be updated to:

 $RES_{adc} = 1024 \times V_{bg} / V_{CC}$

Then the V_{CC} value can be determined by the RES_{adc} result and the known V_{bg}, as shown in the formula:

 $V_{CC} = 1024 \times V_{bg}/RES_{adc}$

This solution helps to measure the V_{CC} without any external components or I/O pins. But, as every coin has two sides, there are two main limitations to this solution.

1. Non-linearity.

In this design, the formula is $\mathbf{y} = \mathbf{m}/\mathbf{x}$, where m = (1024*Vbg), x stands for the ADC result register value, and y stands for the *target* V_{CC} value. To avoid measuring accuracy influence from the non-linearity, the users can make a piecewise fitting in algorithm for further research.

2. Not all AVR[®] parts are suitable.

The user's MCU to apply this method must fully support the core idea:

- Internal reference voltage can be the ADC input
- $\,$ The V_{CC} can be the ADC reference

Check the list about tinyAVR[®] and megaAVR[®] in the Appendix to see if the MCU is suitable.

Note: This solution is not necessary to be applied in AVR XMEGA[®] devices, as these devices have dedicated functions to monitor the voltage.

3. Examples

Two examples will be used to show this solution. One is a typical megaAVR device (ATmega328PB) and the other is a newly released tinyAVR device (ATtiny817).

3.1 Preparation

The preparation shown in the list below is recommended.

1. Install Atmel Studio 7.0

Atmel Studio 7 is an integrated development platform (IDP) for developing and debugging the Microchip[®] SMART ARM[®]-based applications and the AVR microcontroller (MCU) applications. Studio 7 supports all AVR and Microchip SMART MCUs.

The Atmel Studio 7 IDP gives you a seamless and easy-to-use environment to write, build, and debug your applications written in C/C++ or assembly code. It also connects seamlessly to the Microchip debuggers and development kits.

The users are highly recommended to install the Atmel Studio 7.0, which support the ATtiny817. The download link can be found here: http://www.microchip.com/development-tools/atmel-studio-7.

2. Get the target evaluate kit or device.

3.2 Example for ATmega328PB

The high performance ATmega328PB is selected in this example.

ATmega328PB is a megaAVR 8-bit RISC-based microcontroller with picoPower[®] technology. It combines an 8-channel 10-bit A/D converter and operates between 1.8 and 5.5 volts.

Also, ATmega328PB is the first AVR 8-bit MCU to feature the QTouch[®] Peripheral Touch Controller (PTC), which acquires signals in order to detect touch on either self- or mutual-capacitance sensors. It provides a faster and less complex capacitive touch implementation in any application, saving BOM cost.

By executing powerful instructions in a single clock cycle, the device achieves throughputs approaching 1 MIPS/MHz, balancing power consumption, and processing speed.

Figure 3-1. Analog to Digital Converter Block Schematic Operation

As shown in the figure above, the ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The minimum value represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB. Optionally, the AVCC or an internal 1.1V reference voltage may be connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal voltage reference must be decoupled by an external capacitor at the AREF pin to improve the noise immunity.

The analog input channel is selected by writing to the MUX bits in the ADC Multiplexer Selection register ADMUX.MUX[3:0]. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended inputs to the ADC.

The ADC generates a 10-bit result, which is presented in the ADC Data Registers, ADCH, and ADCL. By default, the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADC Left Adjust Result bit ADMUX.ADLAR.

3.2.1 ADC Input Selection

 V_{bg} (V_{\text{REF}}) can be selected as the ADC input per the table below, from the ADMUX registers of the ADC at ATmega328PB.

Table 3-1. ADC Input Selected

REFS[1:0]	Voltage reference selection
0	AREF, internal V _{REF} turned OFF
1	AVCC with external capacitor at AREF pin
10	Reserved
11	Internal 1.1V voltage reference with external capacitor at AREF pin

3.2.2 ADC Reference Selection

The reference selection for the ATmega328PB ADC is shown in the table below. It can be configured in the ADMUX register.

MUX[3:0]	Single ended input
0	ADC0
1	ADC1
10	ADC2
11	ADC3
100	ADC4
101	ADC5
110	ADC6
111	ADC7
1000	Temperature sensor
1001	Reserved
1010	Reserved
1011	Reserved
1100	Reserved
1101	Reserved
1110	1.1V (VBG)
1111	0V (GND)

Table 3-2. Input Channel Selection

3.2.3 Code Example for ATmega328PB

To quickly implement the method into a real project, generating an Atmel START Project based on the ATmega328PB is recommended.

- Connect an ATmega328PB XPRO Mini board to the computer via a Mini-USB cable
- Open Atmel Studio 7.0 and click File \rightarrow New \rightarrow Atmel START Example Project

- Type "ATmega328PB", then select the "ATmega328PB Xplained Mini", and click "CREATE NEW PROJECT" in the window
- Select AV_{CC} as ADC reference and 1.1V internal reference voltage as ADC input, then click "GENERATE PROJECT"
- Type "Battery Voltage Measurement without using I/O pin on ATmega328PB" as the project name
- · Wait for the completion of the project generation to be finished and then locate the main.c file

The simplest way is to check or update three items based on the generated project:

- 1. Let V_{bg} act as ADC input.
- 2. Let V_{CC} act as ADC reference.

3. Start the ADC and calculate the result in the main while(1).

```
float Vcc_value = 0 /* measured Vcc value */;
uint16_t ADC_RES_L = 0;
uint16_t ADC_RES_H = 0;
while(1) {
    if (ADCSRA & (0x01 << ADIF)) /* check if ADC conversion complete */
    {
        ADC_RES_L = ADCL;
        ADC_RES_H = ADCH;
        Vcc_value = ( 0x400 * 1.1 ) / (ADC_RES_L + ADC_RES_H * 0x100) /* calculate
    the Vcc value */;
        }
        }
    }
}
```

3.2.4 Result Validation

By setting a break-point at the calculation code and adding the V_{CC} value in the watch window, the V_{CC} value can be viewed in the watch window.

To verify if the measured V_{CC} value (5.006222V) is correct, the users can use a multimeter to measure the V_{CC} of the XPRO Mini board. In this example, the real V_{CC} value of the board, measured by a multimeter, is V_{CC} = 4.96V.

3.3 Example for ATtiny817

The selected ATtiny817 uses the latest technology from Microchip with a flexible and low-power architecture including Event System and SleepWalking, accurate analog features, and advanced peripherals. Capacitive touch interfaces with driven shields are supported with the integrated QTouch peripheral touch controller.

The Analog-to-Digital Converter (ADC) peripheral in ATtiny817 features a 10-bit successive approximation ADC, and is capable of a sampling rate of up to 150ksps. The ADC is connected to a 12-channel Analog Multiplexer, which allows twelve single-ended voltage inputs. The single-ended voltage inputs refer to 0V (GND). The input values can be either internal (e.g., a voltage reference) or external (connected I/O pins).

The ADC block diagram from the latest data sheet of the ATtiny817 is shown in the figure below.

Figure 3-2. ADC Block Diagram of the ATtiny817

The ADC contains a sample-and-hold circuit, which ensures that the input voltage to the ADC is held at a constant level during conversion.

Any of the ADC input pins, as well as GND and an internal voltage reference (programmable) can be selected as single ended inputs to the ADC. The ADC generates a 10-bit result, which is presented in the Result Register (ADC.RES). The result is presented right adjusted. The minimum value represents GND and the maximum value represents the reference voltage.

3.3.1 ADC Input Selection

 V_{bg} (V_{REF}) can be selected as the ADC input per the table below from the MUXPOS registers of the ADC at ATtiny817.

Value	Description
0x0	AINO
0x1	AIN1
0x2	AIN2
0x3	AIN3
0x4	AIN4
0x5	AIN5
0x6	AIN6
0x7	AIN7

Table 3-3. ADC Input Selected

Value	Description
0x8	AIN8
0x9	AIN9
0x10	AIN10
0x11	AIN11
0x1C	DAC0
0x1D	Internal reference (from VREF peripheral)
0x1E	Temperature sensor
0x1F	0V (GND)
Other	Reserved

The value of the V_{bg} (V_{REF}) can be selected per the table below from CTRLA register of the V_{REF} at ATtiny817.

Table 3-4. Vbg Reference Value selected

Value	Description
0x0	0.55V
0x1	1.1V
0x2	2.5V
0x3	4.3V
0x4	1.5V
other	Reserved

In this design, V_{bg} (1.1V) is selected as the input of the ADC for easier calculation.

3.3.2 ADC Reference Selection

The reference selection for the ATtiny817 ADC is shown in the table below. It can be configured in the ADMUX register of the ADC.

|--|

Value	Description
0x0	Internal reference
0x1	VDD
Other	Reserved.

As the core idea is to let V_{CC} act as the reference of the ADC, the VDD is selected as the ADC reference in this example.

3.3.3 Code Example for ATtiny817

To quickly implement the method into a real project, generating an Atmel START Project based on the ATtiny817 is recommended.

- Connect the ATtiny817 XPRO Mini board to the computer via a Mini-USB cable
- Open Atmel Studio 7.0 and click File \rightarrow New \rightarrow Atmel START Example Project
- Type "ATtiny817" then select the "ATtiny817 Xplained Mini", and click "CREATE NEW PROJECT" in the window
- Select AVCC as ADC reference and 1.1V internal reference voltage as ADC input, and then click "GENERATE PROJECT"
- Type "Battery Voltage Measurement without using I/O pin on ATtiny817" as the project name
- Wait for the completion of the project generation to be finished and then locate the main.c file

The simplest way is to check or update three items based on the generated project.

1. Let V_{bq} act as ADC input.

```
ADC0.MUXPOS = ADC_MUXPOS_INTREF_gc /* ADC internal reference, the Vbg*/;
```

2. Let V_{CC} act as ADC reference.

```
ADC0.CTRLC = ADC_PRESC_DIV2_gc /* CLK_PER divided by 2 */

| ADC_REFSEL_VDDREF_gc /* Vdd (Vcc) be ADC reference */

| 0 << ADC_SAMPCAP_bp /* Sample Capacitance Selection: disabled */;
```

3. Start the ADC and calculate the result.

3.3.4 Result Validation

By setting a break-point at the calculation code and adding the V_{CC} value in the watch window, the V_{CC} value can be viewed in the watch window.

To verify if the measured result V_{CC}_value (5.006222V) is correct, the users can use a multimeter to measure the V_{CC} of the XPRO Mini board. In this example, the real V_{CC} value of the board, measured by a multimeter, is V_{CC} = 4.96V.

4. Appendix

In this chapter, the users will find an overview of tinyAVR and megaAVR devices showing whether they can support this method or not.

Table 4-1. tinyAVR Device List	Table 4-1.	tinyAVR	Device	List
--------------------------------	------------	---------	--------	------

ATtiny devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATtiny4	No	n/a	n/a	Not available
ATtiny5	Yes	n/a	Yes	Not available
ATtiny9	No	n/a	n/a	Not available
ATtiny10	Yes	No	Yes	Not available
ATtiny416	Yes	Yes, 1.1V	Yes	ОК
ATtiny816	Yes	Yes, 1.1V	Yes	ОК
ATtiny417	Yes	Yes, 1.1V	Yes	ОК
ATtiny817	Yes	Yes, 1.1V	Yes	ОК
ATtiny814	Yes	Yes, 1.1V	Yes	ОК
ATtiny102	Yes	n/a	Yes	Not available
ATtiny104	Yes	n/a	Yes	Not available
ATtiny13	Yes	n/a	Yes	Not available
ATtiny13V	Yes	n/a	Yes	Not available
ATtiny13A	Yes	n/a	Yes	Not available
ATtiny20	Yes	Yes, 1.1V	Yes	ОК
ATtiny24	Yes	Yes, 1.1V	Yes	ОК
ATtiny44	Yes	Yes, 1.1V	Yes	ОК
ATtiny84	Yes	Yes, 1.1V	Yes	ОК
ATtiny24A	Yes	Yes, 1.1V	Yes	ОК
ATtiny44A	Yes	Yes, 1.1V	Yes	ОК
ATtiny84A	Yes	Yes, 1.1V	Yes	ОК
ATtiny25	Yes	Yes, 1.1V	Yes	ОК
ATtiny45	Yes	Yes, 1.1V	Yes	ОК
ATtiny85	Yes	Yes, 1.1V	Yes	ОК
ATtiny26	Yes	Yes, 1.18V	Yes	ОК
ATtiny28L	No	n/a	n/a	Not available
ATtiny28V	No	n/a	n/a	Not available
ATtiny40	Yes	Yes, 1.1V	Yes	OK

ATtiny devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATtiny43U	Yes	Yes, 1.1V	Yes	ОК
ATtiny48	Yes	Yes, 1.1V	Yes	ОК
ATtiny88	Yes	Yes, 1.1V	Yes	ОК
ATtiny87	Yes	Yes, 1.1V	Yes	ОК
ATtiny167	Yes	Yes, 1.1V	Yes	ОК
ATtiny261A	Yes	Yes, 1.1V	Yes	ОК
ATtiny461A	Yes	Yes, 1.1V	Yes	ОК
ATtiny861A	Yes	Yes, 1.1V	Yes	ОК
ATtiny261	Yes	Yes, 1.1V	Yes	ОК
ATtiny461	Yes	Yes, 1.1V	Yes	ОК
ATtiny861	Yes	Yes, 1.1V	Yes	ОК
ATtiny828	Yes	Yes, 1.1V	Yes	ОК
ATtiny441	Yes	Yes, 1.1V	Yes	ОК
ATtiny841	Yes	Yes, 1.1V	Yes	ОК
ATtiny2313	No	n/a	n/a	Not available
ATtiny2313A	No	n/a	n/a	Not available
ATtiny4313	No	n/a	n/a	Not available
ATtiny1634	Yes	Yes, 1.1V	Yes	ОК

Table 4-2. megaAVR Device List

ATmega devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATmega48PB	Yes	Yes, 1.1V	Yes	ОК
ATmega88PB	Yes	Yes, 1.1V	Yes	ОК
ATmega168PB	Yes	Yes, 1.1V	Yes	ОК
ATmega48	Yes	Yes, 1.1V	Yes	ОК
ATmega88	Yes	Yes, 1.1V	Yes	ОК
ATmega168	Yes	Yes, 1.1V	Yes	ОК
ATmega48A	Yes	Yes, 1.1V	Yes	ОК
ATmega88A	Yes	Yes, 1.1V	Yes	ОК
ATmega168A	Yes	Yes, 1.1V	Yes	ОК
ATmega48P	Yes	Yes, 1.1V	Yes	ОК
ATmega88P	Yes	Yes, 1.1V	Yes	ОК
ATmega168P	Yes	Yes, 1.1V	Yes	ОК

ATmega devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATmega48PA	Yes	Yes, 1.1V	Yes	ОК
ATmega88PA	Yes	Yes, 1.1V	Yes	ОК
ATmega168PA	Yes	Yes, 1.1V	Yes	ОК
ATmega8	Yes	Yes, 1.3V	Yes	ОК
ATmega8515	No	n/a	n/a	Not available
ATmega8535	Yes	Yes, 1.22V	Yes	ОК
ATmega324PB	Yes	Yes, 1.1V	Yes	ОК
ATmega8A	Yes	Yes, 1.3V	Yes	ОК
ATmega16	Yes	Yes, 1.22V	Yes	ОК
ATmega16A	Yes	Yes, 1.22V	Yes	ОК
ATmega162	No	n/a	n/a	Not available
ATmega164A	Yes	Yes, 1.1V	Yes	ОК
ATmega164P	Yes	Yes, 1.1V	Yes	ОК
ATmega164PA	Yes	Yes, 1.1V	Yes	ОК
ATmega165P	Yes	Yes, 1.1V	Yes	ОК
ATmega165A	Yes	Yes, 1.1V	Yes	ОК
ATmega165PA	Yes	Yes, 1.1V	Yes	ОК
ATmega325A	Yes	Yes, 1.1V	Yes	ОК
ATmega325PA	Yes	Yes, 1.1V	Yes	ОК
ATmega3250A	Yes	Yes, 1.1V	Yes	ОК
ATmega3250PA	Yes	Yes, 1.1V	Yes	OK
ATmega645A	Yes	Yes, 1.1V	Yes	ОК
ATmega645P	Yes	Yes, 1.1V	Yes	OK
ATmega6450A	Yes	Yes, 1.1V	Yes	ОК
ATmega6450P	Yes	Yes, 1.1V	Yes	ОК
ATmega32	Yes	Yes, 1.22V	Yes	OK
ATmega325	Yes	Yes, 1.1V	Yes	ОК
ATmega3250	Yes	Yes, 1.1V	Yes	ОК
ATmega645	Yes	Yes, 1.1V	Yes	ОК
ATmega6450	Yes	Yes, 1.1V	Yes	ОК
ATmega324P	Yes	Yes, 1.1V	Yes	ОК
ATmega324A	Yes	Yes, 1.1V	Yes	ОК

ATmega devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATmega324PA	Yes	Yes, 1.1V	Yes	ОК
ATmega325P	Yes	Yes, 1.1V	Yes	ОК
ATmega3250P	Yes	Yes, 1.1V	Yes	ОК
ATmega328	Yes	Yes, 1.1V	Yes	ОК
ATmega328P	Yes	Yes, 1.1V	Yes	ОК
ATmega328PB	Yes	Yes, 1.1V	Yes	ОК
ATmega32A	Yes	Yes, 1.22V	Yes	ОК
ATmega64	Yes	Yes, 1.22V	Yes	ОК
ATmega640	Yes	Yes, 1.1V	Yes	ОК
ATmega1280	Yes	Yes, 1.1V	Yes	ОК
ATmega1281	Yes	Yes, 1.1V	Yes	ОК
ATmega2560	Yes	Yes, 1.1V	Yes	OK
ATmega2561	Yes	Yes, 1.1V	Yes	OK
ATmega1284	Yes	Yes, 1.1V	Yes	OK
ATmega1284P	Yes	Yes, 1.1V	Yes	OK
ATmega128	Yes	Yes, 1.23V	Yes	OK
ATmega128A	Yes	Yes, 1.22V	Yes	OK
ATmega644	Yes	Yes, 1.1V	Yes	OK
ATmega644A	Yes	Yes, 1.1V	Yes	OK
ATmega644P	Yes	Yes, 1.1V	Yes	OK
ATmega644PA	Yes	Yes, 1.1V	Yes	OK
ATmega64A	Yes	Yes, 1.22V	Yes	OK
AT90CAN128	Yes	Yes, 1.1V	Yes	OK
AT90CAN64	Yes	Yes, 1.1V	Yes	OK
AT90CAN32	Yes	Yes, 1.1V	Yes	ОК
ATmega16M1	Yes	Yes, 1.1V	Yes	ОК
ATmega32M1	Yes	Yes, 1.1V	Yes	ОК
ATmega64M1	Yes	Yes, 1.1V	Yes	OK
AT90PWM1	Yes	Yes, 1.1V	Yes	ОК
AT90PWM2B	Yes	Yes, 1.1V	Yes	ОК
AT90PWM3B	Yes	Yes, 1.1V	Yes	ОК
AT90PWM216	Yes	Yes, 1.1V	Yes	OK

ATmega devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
AT90PWM316	Yes	Yes, 1.1V	Yes	ОК
AT90PWM81	Yes	Yes, 1.1V	Yes	ОК
AT90PWM161	Yes	Yes, 1.1V	Yes	ОК
AT90USB82	No	n/a	n/a	Not available
AT90USB162	No	n/a	n/a	Not available
AT90USB646	Yes	Yes, 1.1V	Yes	ОК
AT90USB647	Yes	Yes, 1.1V	Yes	ОК
AT90USB1286	Yes	Yes, 1.1V	Yes	ОК
AT90USB1287	Yes	Yes, 1.1V	Yes	ОК
ATmega16U4	Yes	Yes, 1.1V	Yes	ОК
ATmega32U4	Yes	Yes, 1.1V	Yes	ОК
ATmega8U2	No	n/a	n/a	Not available
ATmega16U2	No	n/a	n/a	Not available
ATmega32U2	No	n/a	n/a	Not available
ATmega169P	Yes	Yes, 1.1V	Yes	ОК
ATmega169PV	Yes	Yes, 1.1V	Yes	ОК
ATmega169A	Yes	Yes, 1.1V	Yes	ОК
ATmega169PA	Yes	Yes, 1.1V	Yes	ОК
ATmega329A	Yes	Yes, 1.1V	Yes	ОК
ATmega329PA	Yes	Yes, 1.1V	Yes	ОК
ATmega3290A	Yes	Yes, 1.1V	Yes	ОК
ATmega3290PA	Yes	Yes, 1.1V	Yes	ОК
ATmega649A	Yes	Yes, 1.1V	Yes	ОК
ATmega649P	Yes	Yes, 1.1V	Yes	ОК
ATmega649PA	Yes	Yes, 1.1V	Yes	ОК
ATmega6490A	Yes	Yes, 1.1V	Yes	ОК
ATmega6490P	Yes	Yes, 1.1V	Yes	ОК
ATmega329	Yes	Yes, 1.1V	Yes	ОК
ATmega3290	Yes	Yes, 1.1V	Yes	ОК
ATmega649	Yes	Yes, 1.1V	Yes	ОК
ATmega6490	Yes	Yes, 1.1V	Yes	ОК

ATmega devices	Have ADC	V _{bg} as input	V _{CC} as V _{REF}	Conclusion
ATmega329P	Yes	Yes, 1.1V	Yes	ОК
ATmega3290P	Yes	Yes, 1.1V	Yes	ОК

5. Revision History

Doc. Rev.	Date	Comments
A	05/2017	Initial document release.

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.

 Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-1761-3

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	China - Xiamen	Austria - Wels
2355 West Chandler Blvd.	Suites 3707-14, 37th Floor	Tel: 86-592-2388138	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	Tower 6, The Gateway	Fax: 86-592-2388130	Fax: 43-7242-2244-393
Tel: 480-792-7200	Harbour City, Kowloon	China - Zhuhai	Denmark - Copenhagen
Fax: 480-792-7277	Hong Kong	Tel: 86-756-3210040	Tel: 45-4450-2828
Technical Support:	Tel: 852-2943-5100	Fax: 86-756-3210049	Fax: 45-4485-2829
http://www.microchip.com/	Fax: 852-2401-3431	India - Bangalore	Finland - Espoo
support	Australia - Sydney	Tel: 91-80-3090-4444	Tel: 358-9-4520-820
Web Address:	Tel: 61-2-9868-6733	Fax: 91-80-3090-4123	France - Paris
www.microchip.com	Fax: 61-2-9868-6755	India - New Delhi	Tel: 33-1-69-53-63-20
Atlanta	China - Beijing	Tel: 91-11-4160-8631	Fax: 33-1-69-30-90-79
Duluth, GA	Tel: 86-10-8569-7000	Fax: 91-11-4160-8632	France - Saint Cloud
Tel: 678-957-9614	Fax: 86-10-8528-2104	India - Pune	Tel: 33-1-30-60-70-00
Fax: 678-957-1455	China - Chengdu	Tel: 91-20-3019-1500	Germany - Garching
Austin, TX	Tel: 86-28-8665-5511	Japan - Osaka	Tel: 49-8931-9700
Tel: 512-257-3370	Fax: 86-28-8665-7889	Tel: 81-6-6152-7160	Germany - Haan
Boston	China - Chongqing	Fax: 81-6-6152-9310	Tel: 49-2129-3766400
Westborough, MA	Tel: 86-23-8980-9588	Japan - Tokyo	Germany - Heilbronn
Tel: 774-760-0087	Fax: 86-23-8980-9500	Tel: 81-3-6880- 3770	Tel: 49-7131-67-3636
Fax: 774-760-0088	China - Dongguan	Fax: 81-3-6880-3771	Germany - Karlsruhe
Chicago	Tel: 86-769-8702-9880	Korea - Daegu	Tel: 49-721-625370
Itasca, IL	China - Guangzhou	Tel: 82-53-744-4301	Germany - Munich
Tel: 630-285-0071	Tel: 86-20-8755-8029	Fax: 82-53-744-4302	Tel: 49-89-627-144-0
Fax: 630-285-0075	China - Hangzhou	Korea - Seoul	Fax: 49-89-627-144-44
Dallas	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Rosenheim
Addison, TX	Fax: 86-571-8792-8116	Fax: 82-2-558-5932 or	Tel: 49-8031-354-560
Tel: 972-818-7423	China - Hong Kong SAR	82-2-558-5934	Israel - Ra'anana
Fax: 972-818-2924	Tel: 852-2943-5100	Malaysia - Kuala Lumpur	Tel: 972-9-744-7705
Detroit	Fax: 852-2401-3431	Tel: 60-3-6201-9857	Italy - Milan
Novi, MI	China - Nanjing	Fax: 60-3-6201-9859	Tel: 39-0331-742611
Tel: 248-848-4000	Tel: 86-25-8473-2460	Malaysia - Penang	Fax: 39-0331-466781
Houston, TX	Fax: 86-25-8473-2470	Tel: 60-4-227-8870	Italy - Padova
Tel: 281-894-5983	China - Qingdao	Fax: 60-4-227-4068	Tel: 39-049-7625286
Indianapolis	Tel: 86-532-8502-7355	Philippines - Manila	Netherlands - Drunen
Noblesville, IN	Fax: 86-532-8502-7205	Tel: 63-2-634-9065	Tel: 31-416-690399
Tel: 317-773-8323	China - Shanghai	Fax: 63-2-634-9069	Fax: 31-416-690340
Fax: 317-773-5453	Tel: 86-21-3326-8000	Singapore	Norway - Trondheim
Tel: 317-536-2380	Fax: 86-21-3326-8021	Tel: 65-6334-8870	Tel: 47-7289-7561
Los Angeles	China - Shenyang	Fax: 65-6334-8850	Poland - Warsaw
Mission Viejo, CA	Tel: 86-24-2334-2829	Taiwan - Hsin Chu	Tel: 48-22-3325737
Tel: 949-462-9523	Fax: 86-24-2334-2393	Tel: 886-3-5778-366	Romania - Bucharest
Fax: 949-462-9608	China - Shenzhen	Fax: 886-3-5770-955	Tel: 40-21-407-87-50
Tel: 951-273-7800	Tel: 86-755-8864-2200	Taiwan - Kaohsiung	Spain - Madrid
Raleigh, NC	Fax: 86-755-8203-1760	Tel: 886-7-213-7830	Tel: 34-91-708-08-90
Tel: 919-844-7510	China - Wuhan	Taiwan - Taipei	Fax: 34-91-708-08-91
New York, NY	Tel: 86-27-5980-5300	Tel: 886-2-2508-8600	Sweden - Gothenberg
Tel: 631-435-6000	Fax: 86-27-5980-5118	Fax: 886-2-2508-0102	Tel: 46-31-704-60-40
San Jose, CA	China - Xian	Thailand - Bangkok	Sweden - Stockholm
Tel: 408-735-9110	Tel: 86-29-8833-7252	Tel: 66-2-694-1351	Tel: 46-8-5090-4654
Tel: 408-436-4270	Fax: 86-29-8833-7256	Fax: 66-2-694-1350	UK - Wokingham
Canada - Toronto			Tel: 44-118-921-5800
Tel: 905-695-1980			Fax: 44-118-921-5820
Fax: 905-695-2078			